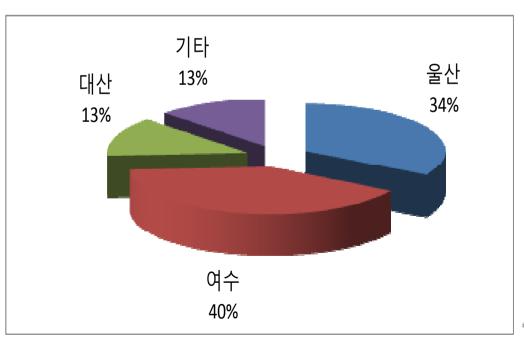
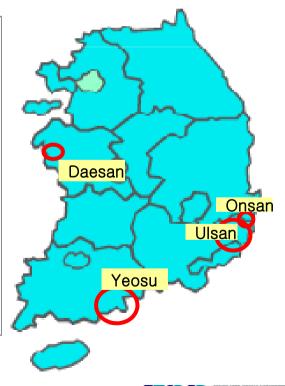


고압가스 안전관리 방안

목차

- 국내 석유화학 산업 현황
- 석유화학 사고사례
- 2010년 석유화학 관련 제도 개선 사항
- 석유화학 관련 제도 개선 추진 사항
- 대단위 고압가스시설 안전성 향상 방안


국내 석유화학 산업 현황



국내 정유 · 석유와약 업계 연왕[2010년말 기준]

구 분	원유정제	석유화학	계
플랜트 수	136	393	529
업체 수	4	130	134

SMS심사 및 확인평가 실적

년도 구분	2005	2006	2007	2008	2009	2010
SMS 심사	52	63	75	60	74	61
SMS 확인평가	131	125	94	101	157	196

SMS심사 및 확인평가 대상 꾸준한 증가 추세

국내 정유 · 석유와약 업계 주요 문제점 [1]

◆ 시설의 장기가동에 따른 장치 및 설비 노후화

- 울산, 여수, 대산지역 산업단지 조정 최대 40년 경과
- 응력부식균열, 보온깨아부식 등으로 인안 사고발생 위험 증가

◆ 시설의 신설 및 증설에 따른 설비 과밀화

위엄물 저장량 및 처리량 증가에 따른 잠재 위엄성 사전 인지 및
 안전대책 마련 필요

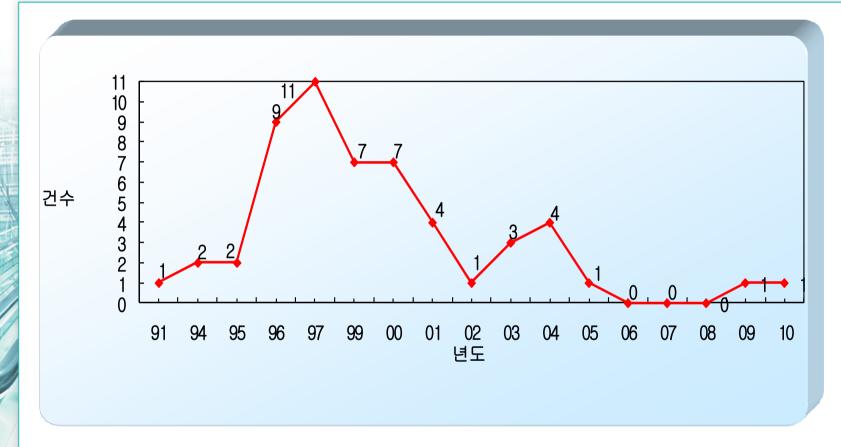
◆ 경쟁력 강화를 위한 정기보수기간 연장

- 생산비용 저감을 위한 공장 가동률 증대 요구
- 운전 중 부분 보수 시행에 따른 보수 중 사고 발생 빈번 예) 울산 00정유사 수소가스 누출· 와째 사고(2010.12) 등
- 안전장치(인터록, 긴급차단밸브 등) 인뢰성 문제

국내 정유 · 석유와약 업계 주요 문제점 [2]

◆ 매각, 법인 분리 등으로 인한 플랜트별 사업 이전 왈발

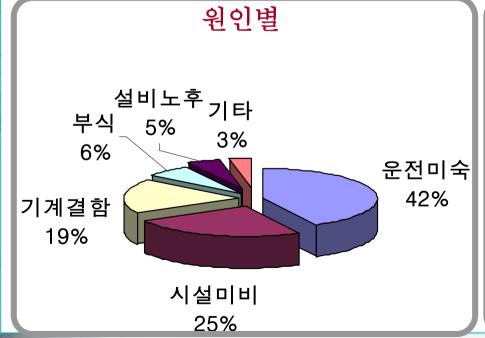
- 공통조직인 생산지원 분야의 외부(엽력업체 등) 의존도 심화예) 장치검사, 유틸리티, 제품출하 분야 등 아웃소싱

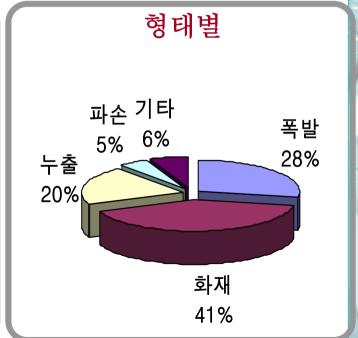

◆ 구쪼쪼쟁에 따른 안전관리쪼끽 축소

- 안전관리부서가 쪼직 구성상 Staff이 아닌 라인쪼직으로 구성
 안전부서의 독립적인 지위 및 역할 미비 (안전 vs 생산)
- 검사부서가 공무 정비 부문 소속으로 운영 검사조직의 공무부서 견제 역할 지장 (검사 vs 공무)

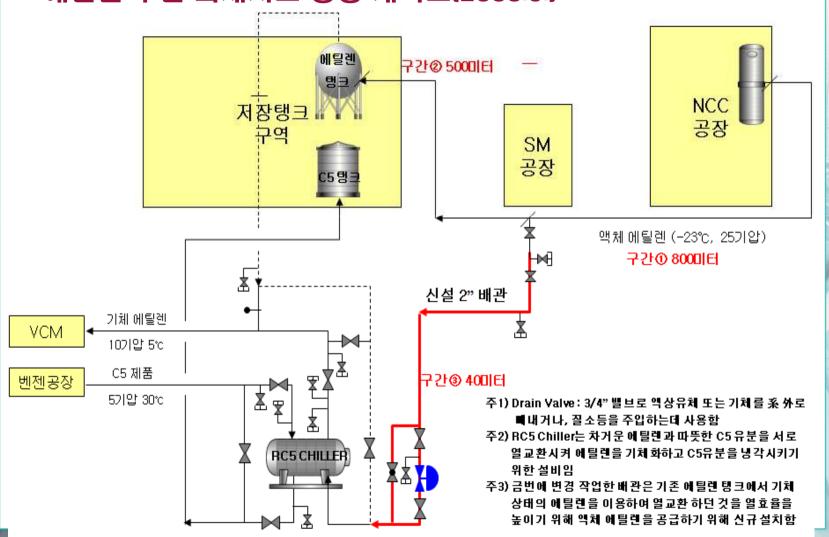
석유화학 사고 추세

2010년도 사고 1건 발생(누출,화재)



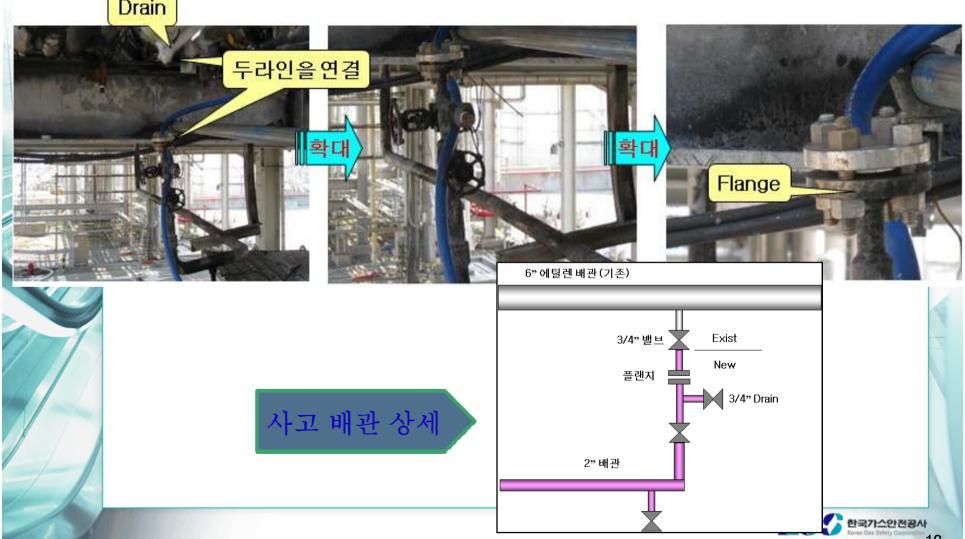


석유화학 플랜트 사고유형



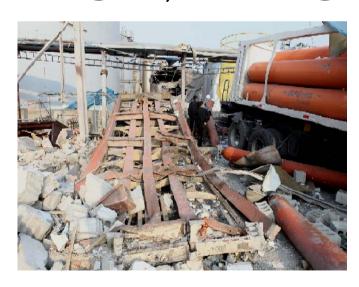
- 에틸렌 누설 화재사고(2009.6.)
- ❖ 장소: 대산석유와약단지 NCC
- ❖ 원인
 - : 신설 배관에 액상 에틸렌(-23℃, 25기압) 통입 작업을 하던 중, 통입이 원활하지 않자 작업자가 신설배관 입구 쪽의 3/4″ 블록 밸브의 출구 플랜지를 풀고 블록 밸브의 막임 상태를 확인하는 과정에서 액상의 에틸렌이 다량 누출되어 미상의 점화원에 의한 화재가 발생한 사고임.
- ❖ 피애: 사망 1명, 부상2명, 파이프랙 일부 와염 손상
- ❖ 문제점 및 대책
 - : 안전작업허가서 발급 미비
 - 승인(어가) 절차 이행, 감독자 배치 등 안전작업절차 미준수
 - 바관 내 내용물 제거, 짠가스 퍼지, 치완 등 안전작업절차 누락, 작업자 임의 절비분해 질시 등

● 에틸렌 누설 화재사고 공정 개략도(2009.6.)



● 에틸렌 누설 화재사고 현장사진(2009.6.)

Drain

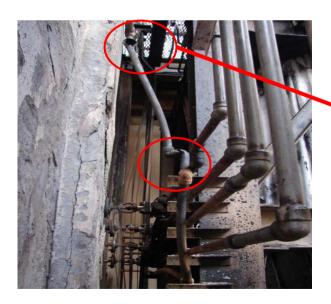


● 수소용기 폭발사고(2010.3.26)

❖ 장소: 군안산업단지 고압가스 제조사

❖ 원인: 200bar로 충전되어 있는 수소가스용 "차량에 고정된용기 운반차량'에서 품질검사용 가스를 소영 용기로 채취하던 중 수소용기 9개가 폭발.파열

❖ 피해 : 사망 1명/부상 1명 동산 7,000만원/부동산 5,000만원



● 수소배관 파열 및 화재사고(2010.7.22)

❖ 장소: 울산 석유와약산업단지 솔비톨 제조사

❖ 원인 : 노후된 수소배관(23년)에 대한 지속적인 피로영향 및 배관 내부 응력에 따른 균열 및 파열

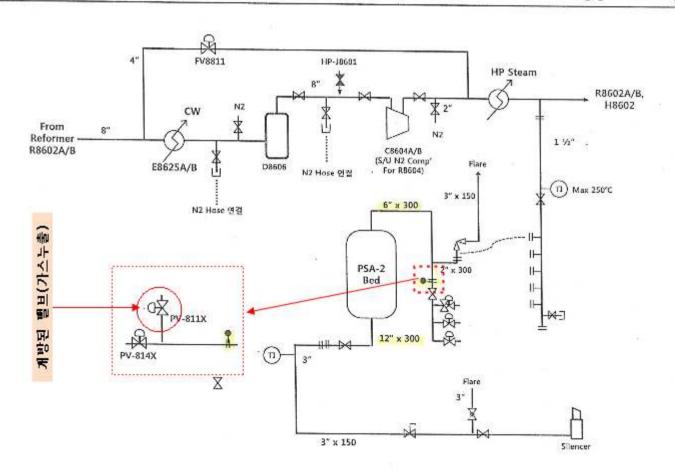
❖ 피해 : 설비 손상 등 4,700만원

● 수소가스 누출·화재사고(2010.12.20)

❖ 장소: 울산국가산업단지 HOU

❖ 원인: HOU(중필유 분해)공장 내 수소제조공정에서 촉매재생 (고순도수소생산용)작업 완료에 따른 필소퍼지를 실시하고 배관 연결작업을 위해 필소퍼지배관 분리작업 중에 수소 배관의 맹판에서 수소가스가 누출되어 미상의 점확원에 인확되면서 급격한 화재로 7명의 사상자 및 재산피해가 발생한 사고

❖ 피해 : 사망 3명, 부상 4명절비손상 등 300만원



● 수소가스 누출·화재사고(2010.12.20)

PSA-2 Hot N2 Purge Drawing (1)

HOU PSA-2공정 Hot N2 Purge

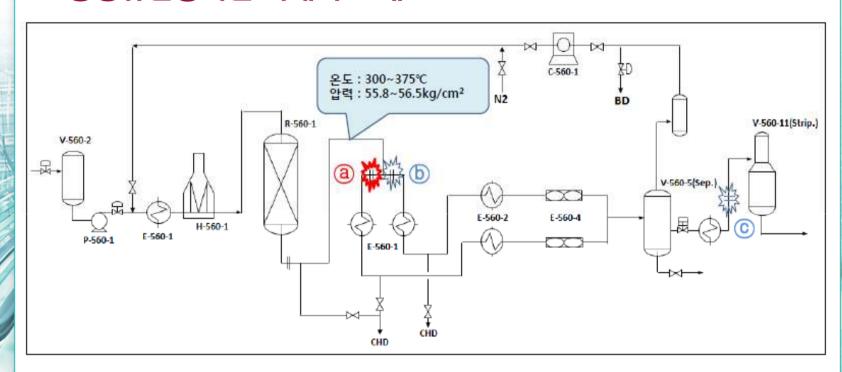
등경유탈황시설 화재사고(2011.4.26)

❖ 장소 : 인천 ○○정유사

❖ 개요 : 등 · 경유 탈왕시설 내 반응기 하부에서 열교완기로 가는 배관의 플랜지부(18 ")의 가스켓 파손에 따른 반응물이 누출되어 와재가 발생한 사고.

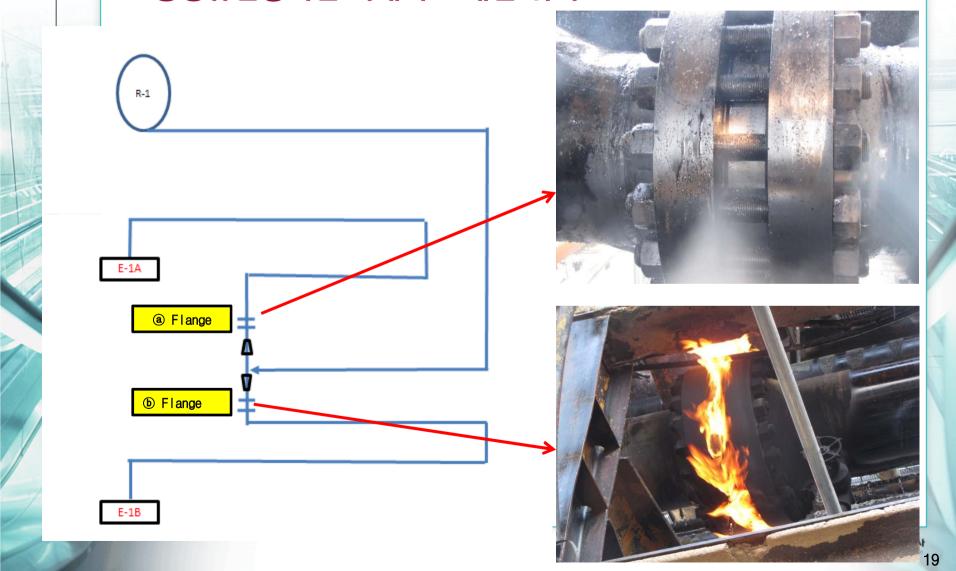
❖ 피해 : 걸비 손상 등 1억1천만원

❖ 원인 : Spacer Inlet Serration 불량과 Overbolting에 의한 것으로 주정됨.


1.최초 설치 당시 Spacer의 한쪽면 Serration 불량으로 운전중 미량의 Leak 발생, 장기 운유시 Flange면에 일부 Pitting Corrosion을 유발한 것으로 추정됨.

2.2008년S/D시 Leak가 발생되었고 ,Gasket교체 후 S/U시 Leak가 깨발되어 Overbolting이 수행되어 운전 중에 사고발생.

● 등경유탈황시설 화재사고 개요



- 4/26 15:15 Reactor Effluent 열교환기(E-560-1A) Tube side Inlet 배관(18") 전단 Flange (③위치) Leak로 화재 발생
- 인접 E-560-1B 전단 배관(18") Flange (⑤위치) 및 상부 Stripper(V-560-11) 전단 배관(12") Flange (⑥위치)에 옮겨 붙어 총 3개소에서 화염 발생

정유·석유화학 플랜트 사고 분석 결과

사고발 생 추이 1970-1990년대: 안전관리시스템 및 설비관리체계의 미흡으로 급격한 사고 증가 추세 1996년 이후: SMS/PSM제도 등의 도입으로 인한 안전의식 및 안전관리체계 향상으로 급격한 감소추세

주요 사 고 원인 분 석

- 공정안전작업절차 미준수
- 회사 및 근로자의 안전의식 부족
- 협력 및 용역업체의 관리 부족
- 기업 내 구조조정 및 인원감축으로 인한 미 숙련 작업자의 현장 투입
- 안전조직의 축소 및 안전담당조직의 인원 감 축으로 인한 안전관리 활동 위축

2010년 석유화학 관련 제도 개선 사항

긴급차단장치 [MOV] 관련 기준 정비

추진배경

- 전기를 조작 동력원으로 하는 MOV는 공기압을 조작 동력원으로 하는 AOV보다 조작성능이 우수하여 석유화학업체 및 해외 재보험사 등에서 선호하고 있으나,
- MOV에 대한 제품검사 및 시설 검사 기준이 없어 시설 적용이 불가하여 관련 기준을 정비함

주요개정 사항

- 긴급차단장치(MOV)의 제품 검사 기준 개정
 : 성능기준을 만족하는 내화조치 [API 553 Refinery Control Valves 기준과 통일]로 기존 긴급차단장치(AOV)의 온도상승시 자동차단 기능을 대체 보완
- 긴급차단장치(MOV)의 설치와 관련한 시설 검사 기준 개정: 내화조치, 비상전원 확보 등

긴급차단장치 [MOV] 관련 기준 – 시설기준(1)

- 고압가스특정제조의 시설 기술 검사 감리 정밀안전 기준 [KGS FP111, 10.4.29]
- 긴급차단장치 설치 기준
- 2.6 사고예방설비기준
- 2.6.3 긴급차단장치 설치

가연성가스 또는 독성가스의 고압가스설비 중 2.6.14에 따른 특수 반응설비 및 저장탱크 및 시가지·주요하천·호수 등을 횡단하는 배관(불활성가스에 속하는 가스는 제외한다)에는 긴급시 가스의 누 출을 효과적으로 차단하기 위하여 다음 기준에 따라 긴급차단장치 또는 이와 동등 이상의 효과가 있는 장치(이하 "긴급차단장치" 라 한다)를 설치한다.

긴급차단장치 [MOV] 관련 기준 – 시설기준(2)

■ 긴급차단장치 차단조작기구 및 기능

2.6.3.3 긴급차단장치 차단조작기구 및 기능

2.6.3.3.2 긴급차단장치는 그 성능이 원격조작에 따라 작동되고 이상사태가 발생하여 고압가스설비 및 주위 온도가 상승할 때 자동차단구조로 한다. 다만, 조작 동력원이 전기인 경우에는 주위의 온도 상승에 의한 자동 차단구조를 아니할 수 있다.

긴급차단장치 [MOV] 관련 기준 – 시설기준(3)

■ 긴급차단장치 차단조작기구 및 기능

2.6.3.3.6 화염에 노출될 수 있는 지역에 설치되는 조작동력원이 전기인 긴급차단장치의 밸브본체, 밸브 구동부, 전기 및 제어 케이블에는 주변 화재에 견딜 수 있도록 다음 중 어느 하나의 내화성능을 갖는 것으로 한다.

[1] 화재 시 최소한 1093℃에서 20분 이상 견딜 수 있는 구조로 한다.

(2) 두께 50mm 이상의 내화콘크리트 또는 이와 동등 이상의 내화성능을 갖는 불연재료의 단열재로 피복한다.

긴급차단장치 [MOV] 관련 기준 – 제품기준(1)

- 고압가스용 긴급차단장치 제조의 시설 기술 검사 재검사 기준 [KGS AA317, 10.8.31]
 - 긴급차단장치의 구조
- 3.4.1.1 긴급차단장치의 구조는 다음 기준에 적합한 것으로 한다.
 - 3.4.1.1.1 원격조작에 따라 작동되는 구조인 것
 - 3.4.1.1.2 전기식 이외의 긴급차단장치는 이상사태가 발생하여 고압가스설비 또는 주위의 온도가 상승할때 자동적으로 차단되는 구조인 것
 - 3.4.1.1.3 전기식 긴급차단장치는 밸브 몸통부, 밸브 구동부, 전기배선 등이 화재 시 1093℃에서 20분 이상 견딜 수 있는 구조인 것

긴급차단장치 [MOV] 관련 기준 – 제품기준(2)

■ 긴급차단장치의 구조

3.4.1.3 특정제조시설에 설치하는 긴급차단장치의 조작기구가 동력원이 전기식(이하 "전기식'이라 한다)인 경우 모터, 구동부의 보호기능보다 긴급차단기능이 우선시 되도록 전기회로는 다음 기준에 적합한 것으로 한다.

- (1) 닫힘 토크(Torque) 스위치가 우회(Bypass)되고 리미트(Limit) 스위치가 닫힘 위치로 되어 밸브가 닫히는 구조일 것
- (2) 조작 회로의 퓨즈(Fuse)가 우회되는 구조일 것
- (3) 과열부하(Thermal overloads)가 우회되는 구조일 것
- (4) 모터와인딩(Motor winding)에서의 모든 온도센서(Thermistor) 가 우회되는 구조일 것

긴급차단장치 [MOV] 관련 기준 – 제품기준(3)

■ 제품확인검사

4.4.2.2.1 제품확인검사 (2-6) 구조검사 긴급차단장치의 구조검사는3.4.1에 적합한지 여부를 확인한다. 다만, 3.4.1.1.3에 따른 내화구조검사는 2.1에 따라 내화성능의 품질 관리에 지장이 없다고 인정을 받은 자가 제출한 시험성적서로 이를 갈음할 수 있다.

■ 재검사 기준

5.재검사 기준 (1-4) 구조검사 긴급차단장치의 구조검사의 검사 요령은 4.4.2.2.1(2-6)에 따른다. 다만, 전기식 긴급차단장치의 내화구조검사는 제외한다.

외국용기 제조 등록 대상 확대

추진배경

- 수입용기 등의 안전확보와 국내 제조자와의 형평성 확보를 위해 압력용기 및 가스용기에 대하여 외국제조업체 등록을 시행하고 있으나,
- 독성가스배관용 밸브, 긴급차단장치 등은 제외되어 안전성 검 증에 곤란.

주요개정 사항

- 해외제조 등록 대상에 다음 품목 추가 [10.10월, 규칙제9조의2]
 - : 독성가스 배관용 밸브, 냉동용 특정설비, 긴급차단장치 및 안전밸브 등
- 등록 시행 시기: 11년 6월까지

외국용기 제조 등록 대상 확대

●고압가스안전관리법 시행규칙 제9조의 2

제9조의2(외국용기등 제조등록의 면제 등)

① 영 제5조의2제1항 단서에서 "지식경제부령으로 정하는 용기등"이란 다음 각 호의 용기등을 말한다.

[중략]

8의2. 냉동용특정설비 (고압가스특정제조시설, 고압가스일반제조시설 · 저장소시설, 「액화석유가스의 안전관리 및 사업법」에 따른 액화석유가스의 충전시설 · 저장소시설 및 「도시가스사업법」에 따른 가스공급시설에 부속된 것은 제외한다)와 그 특정설비 및 냉동기에 부착되어 수입되는 안전밸브 및 독성가스배관용 밸브

검사기준 명확화 -기밀시험 방법 개선 등

추진배경

- 현재 특정제조시설 완성검사시 가스설비의 가스누출여부를 확인하기 방법은 기밀시험으로 한정되어 있어 현장에서 애로 사항 발생
- KGS 코드와 기술지침 사이의 차이, 법적근거가 미약한 기준 등에 대하여 상호 부합화 필요성

주요개정 사항

- 완성검사시 가스누출여부를 확인(발포액, 누설감지기, 디지털 압력계 등)하면 기밀시험을 한 것으로 갈음할 수 있도록 개정
- 세부검사기준 및 확인사항 추가 등을 통하여 검사방법 명확화

검사기준 명확화 -기밀시험 방법 개선 등

- 고압가스특정제조의 시설 기술 검사 감리 정밀안전 기준 [KGS FP111, 11.01.03]
- 기밀시험 방법 개선

4.2.2.2.30 가스설비의 구조

가연성가스. 독성가스 및 산소의 가스설비는 **발포액**, 누설검지기 또는 디지털압력계 등으로 누출검사를 실시하여 가스가 누출하지 않는지 확인한다.

석유화학 관련 제도 개선 추진 사항

인접사업소 설비간 거리 대상 제조설비 명확화 추진 (Happy! KGS

추진배경

 국내 석유화학업체의 증설 계획이 다수 추진되고 있으나 국내 석유화학단지의 부지 제한 등으로 설비 증대에 어려움을 겪고 있음.

현실태

 고압가스 특정제조시설의 경우 제조설비와 인접한 사업소의 제조설비와의 이격거리를 40m 이상 유지하거나, 사업소 제조 설비와 경계까지 20m 이상의 거리를 유지하도록 규정.
 [KGSFP111 2.1 배치기준]

개정안

- 인접 사업소 설비와 이격거리 유지 적용대상 제조설비에 대한 기준을 명확화
- 〈참조〉 일본법령은 제조를 위한 가스설비를 다음과 같이 제한 : 독성가스 설비, 연소열량이 3.4 × 10⁶ 이상인 가연성가스설비

[참고] 일본 고압가스보안법령

規制対象設備

0 燃性ガスの製造設 備

.4×106以上の狄 毒性ガス 製造設備 貯蔵設備及び 処理設備% 受入れ、送り出し のための処理設備 その他の 可燃性ガスの 製造設備

その他のガスの製造設備

製造事業所に隣接した特定製造 事業所の高圧ガス製造設備

SMS준수여부확인평가 대상 합리화 추진

추진배경

- 최근 국내외 석유화학공장의 사고 발생으로 인한 안전관리시
 스템 및 사업장 안전문화의 중요성 대두
- SMS준수여부확인평가의 내실화 및 업체 부담 경감 도모

현실태

- 현재 SMS준수여부확인평가는 시설[플랜트]단위로 실시토록
 하고 있어, 수검 부담 증가 및 평가부실화 초래
- 사업장 전반에 대한 안전문화(Safety Culture) 평가 항목 부족

개정안

- SMS준수여부확인평가 대상을 현 시설단위에서 사업장단위로 합리화할 수 있도록 관련 법규 개정 추진
- 사업장의 전반적인 안전문화 및 단위 시설의 준수여부를 종합적으로 평가할 수 있도록 평가 항목 재검토

SMS 대상(주요구조부분의 변경) 추가 추진

추진배경

- 증설 등으로 인한 플레어 용량 증가 및 기존 플레어 용량 계산 결과에 대한 재검토가 필요한 경우 발생
- 공장 부지 및 비용 문제 등으로 신규 플레어 스택 설치가 곤란한 경우 최신 안전성평가기법인 SIS 도입 (SIL3이상 만족, API 521 Std)으로 플레어 용량을 절감하는 공장 증가

현실태

- SMS를 제출하지 않는 자체 플레어 용량 변경시 (SIS적용에 따른 감소) 적정성 확인에 곤란
- 현장확인결과 SIS 설치 후 유지관리 미비로 실질적 플레어 로 드 절감 인정에 곤란
- 공장 증설에 따른 플레어 로드 증가에 대한 검증 곤란

SMS 대상(주요구조부분의 변경) 추가 추진

현실태

- 주요구조 부분의 변경 관련 현행 법규
- 고압가스안전관리법 시행령 제11조제1항에서 "주요구조부분의 변경"이란 다음 각 목과 같다.
 - 가. 생산량의 증가, 원료 또는 제품의 변경을 위하여 반응기 (관련 설비 포함)를 교체 또는 추가로 설치하는 경우
 - 나. 생산량의 증가, 원료 또는 제품의 변경을 위하여 플레어스택을 설치 또는 변경하는 경우
 - 다. 설비교체 등을 위하여 변경되는 생산설비 및 부대설비의 당해 전기 정격용량이 300째 이상 증가한 경우

개정안

- '주요구조부분의 변경사항' 중 '플레어 스택'을 설비적인 측면에서 시스템적으로 확대
 - SIS적용(신규 및 변경)에 따른 플레어 용량 절감시
 - 생산용량 증가 등에 따른 플레어 용량 계산 변경시 (Gorverning Case 변경)

가스설비 용접부 후열처리 기준 추가 추진

추진배경

- 부식 유발 독성가스 처리설비 및 배관의 용접부에 대한 후열처리 기준 미비
 - 독성가스 처리설비(배관, 압력용기 등)의 SCC 방지대책으로 용접부 후열처리를 하도록 관련근거 없이 권고사항으로만 제시하고 있음
 - ▶ 암모니아, 염소의 경우 NACE, API 571 (4.5.4 Ammonia Stress Corrosion Cracking)에서 부식환경하에서 SCC(응력부식균열)를 규 정하고 있음

개정안

- 부식을 일으키는 치사적 물질 및 독성가스에 대해서는 설비 및 배관의 용접부에 후열처리를 실시하도록 규정
- ❖ KOSHA CODE는 독성물질 배관에 대해 후열처리를 실시토록 규정하고 있음

안전거리(화기와의 거리) 기준 개정 추진

추진배경

가스설비 및 저장설비는 화기와의 거리에 무관하게 의무적으로 가스유동방지시설을 설치토록 되어 있어 현장적용에 무리발생

현실태

 현재 기준은 가스설비 및 저장설비와 화기와의 거리를 2m (가 연성가스와 산소의 가스설비 또는 저장설비는 8m)이상 유지 하고, 이에 더하여 가스유동방지시설을 설치토록 되어 있음 [KGS FP1112.1.2 화기와의 거리]

개정안

화기와의 이격거리를 일정거리 이상 유지하는 경우에는 유동
 방지시설 설치를 하지 않을 수 있도록 개정

제조시설의 계기실 보호설비 설치 대상 확대

추진배경

- 특정제조시설의 계기실은 실내로 가스유입을 막기 위해 특정 가스에 한정하여 양압 유지 및 이중출입문을 설치하도록 되어 있으나,
- 한정된 가스外에 독성가스 및 공기보다 무거운 기타 가연성가 스에 대한 추가 적용이 곤란함 [KGS FP111 2.8.4.1 계기실 설치]

개정안

- 아세트알데히드 · 이소프렌 · 에틸렌 · 염화비닐 · 산화에틸렌
 · 산화프로필렌 · 프로판 · 프로필렌 · 부탄 · 부틸렌 · 부타디
 엔으로 한정된 해당 제조시설의 가스에 "독성가스 등"을 추가하여 그 대상을 확대할 수 있도록 관련 코드 개정
- NFPA 496, FM 7-45 등은 가연성물질에 대해 양압유지 등 안전 장치를 설치토록 규정하고 있음

특정설비 재검사 제외 대상 추가

추진배경

 현재 저장탱크 재검사 기준은 평저형 저온저장탱크 및 초저온 저장탱크를 재검사 대상에서 제외하고 있으나, 가연성가스 저 온저장탱크의 경우 재검사대상에서 제외하는 명확한 규정이 없음

[고법 시행규칙 별표22 용기 및 특정설비의 재검사기간]

개정안

재검사 제외대상인 평저형 및 이중각 진공단열형 저온저장탱 크에 가연성 저온저장탱크를 추가하도록 관련 법규 개정 추진

대단위 고압가스시설 안전성 향상 방안

대단위 고압가스시설 안전성 향상 방안

자율 안전관리 정착

(시스템 구축 지원 확대)

안전 선진화

사고예방 · 예측관리 (선진 진단기술 적용)

기업·기관간 협력 (파트너쉽)

감사합니다.

당신의 안전은 우리의 행복입니다.

osnoh@kgs.or.kr

T.031-310-1531